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S.C. Snowdon 
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Summary 

A solution has been found for stresses in a structural 

composite that models the superconducting magnets in the Energy 

Doubler and the High-Energy Beam Line. The composite consists 

of three nested hollow cylinders with the innermost cylinder 

representing the region of the bore tube, the middle cylinder 

the region of the superconductor, and the outermost cylinder the 

region of the collars. Under zero stress the distribution of 

current is chosen to give a pure dipole field. Subsequent effects 

of pre-stress, cooldown, and excitation on the state of stress 

are determined. The corresponding strains and effects of conductor 

movement on field quality are determined. Each region is character- 

ized by two elastic constants, one thermal constant, and one pre- 

tension constant. Numerical results are given. 

Introduction 

A solution to a similar problem has been given previously1 in 

which the magnetic field was generated by two sheet currents 

varying as cosine theta. One sheet current was located at the 

boundary between the innermost cylinder and the middle cylinder 

of structural material. The other sheet was located at the boundary 

between the middle cylinder and the outermost cylinder of structural 

@ Operated by Universities Research Association Inc. under contract with the Energy Research and Development Administration 
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material. The present note addresses the problem of improving 

the representation of the magnet excitation by replacing the 

two current sheets with a thick cosine theta current distribution 

in the middle structural region. 

Equation for Elastic Displacement 

If 6 is the displacemet vector and the body forces are 

derived from the Lorentz force then* 

vxvxt-2&V(G) = 29:x;, 

where E is Young's modules, v is Poisson's ratio, ? is the cur- 

rent density and B is the magnetic induction. 

Generalized Plane Strain Approximation 

For simplicity consider only the case for which uz = eZZz with 

E zz = constant. The remaining components are to be considered 

functions of (r, 0) only. This is consistent with an excitation 

in which Jz is the only component of current density. Hence 

Eq. (1) becomes 

(1) 

r m rar(rue)-gz i a 

[ 

la 1 [ -@A $&(rur)+:$ 1 = -2 TJ~B~ , (2) 

-& $&(ru,)-i% -B$& i&(rur)+k% 
[ I [ 1 = 2 TJZ~r, 

where 
l-v 

6 = *m- (4) 

Calculation of Magnetic Quantities of Interest 

By definition a thick cosine theta conductor carries an axial 

current betweentworadii (b, c) with a current density that varies 

as 
J z = Jo cos8. (5) 
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From this it follows3 that 

(r<b) Br = -2aJo(X-b)sinB, (emu) 

Be = -2sJo(X-b)cosB, (emu) 

(b<r<c) B r = FJo[2r-3X+b3r-2]sin0 

Be = 7 0 2nJ [4r-3A-b3r-*]cosB 

(c<r<rs) Br = -~Jo(c3-b3)(rs-2tr-2)sin8, 

Be = -~Jo(c3-b3)(.s-2-r-2)cos0, 

where for convenience in these and subsequent formulas 

A = ctf(c3-b3)r -2, 
S 

the radius of the iron shield being rs. Hence in the region of 

the conductor 

JzBe 
= ~Jo2[k+b3r-2](1tcos2e), (emu) 

jzBr = ;Jo2[2r-3htb3r-*]sin28. (emu) 

It is of interest to find expressions for the magnetic energy 

per unit length of the dipole and for the Maxwell stress tensor 

since this enters the virial theorem. The magnetic energy is given 

bY 
1 

'B = Bii 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

or utilizing Eqs. (6-11) one has 

wB = +v2J02[X( c'-b3)-;(c4-b4)-b3(c-b)]. (16) 

The maximum current density Jo may be found in terms of the central 

field from Eq. (7) 
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BO 
= -2nJo(X-b). (17) 

A cylindrical coordinate representation of the Maxwell stress 

tensor is 

B212 
r -L 2B 

i -- 

BrBf3 'rBz 
;= 1 

BrBe 
212 

4;; Be -?B BeBz 

BrBz BeBz 

B212 -- 
z 2B 

In utilizing this tensor in the virial theorem the only quantity 

needed is the projection of the outward radial traction on the 

radius vector. This becomes 

+-L-L 

reran = &(Br2-Be2)r. 

Form of Solution 

Equations (13) and (14) indicate that the form of the dis- 

placement should be taken as 

U r = Po(r)tP2(r)cos2B % = &2(~r)sin28. 

Substituting into Eqs. (2-3) gives 

-"&[k$-(rPo)3; -u[4r-3i-b3rm2]. 

LP -o& $d--(rP2) tLd(rQ2)-2B& 
r* ' [ 1 r2 dr 

4r-3h-b3rm2 

[ 1 
1 , 

tgL(rP2)-& $-&;(rQ,) r2dr +sQ2= 

ukr-3f,b r 3 -2 ] 3 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 
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where for convenience 

v= 2?$;Jo2. (24) 

Solutions of the Homogeneous Equation 

In general these solutions are of the form 

pO 
= Ar-l+Br P2 = CrP Q2 = DrP 

where p is found by substituting into Eqs. (22-23) to obtain 

[4-S(p2-l)lC+2~p+l-@(p-1)1D = 0 , 

2[-ptlt~(ptl)lc-~p2-1-4B1D = 0 . 

The determinant of the coefficients is 

Ah(p) = E(p2-l)(p2-9) . 

(25) 

(26) 

(27) 

(28) 

Setting this equal to zero gives p = ?l, *3. Hence there are four 

solutions which must be added together to give 

P2 = -Dlr-SD2r-1-sD3r3tD4r-3, (29) 

Q2 = DlrtD2r-1tD3r3tD4r-3. (30) 

Thus the homogeneous solutions are seen to be identical in form 

with those found previously ' after it is recognized that (ur = 

+rlnr, ue = Gre) the solution describing pretension may also be 

added. 

Particular Solution 

Since each term of the RHS of Eq. (21) is of the form Brq, one 

may take for PO in Eq. (20): P 
0 

= ArP. Then p = q+2 and 

(31) 

Adding the contributions for q = 1, 0, -2 gives 



For the remainder o 

corresponding to 

Substituting 
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PO = i[$r2-ir2tb3]. , 

D 
f the solution one may take 

0 i 

‘2 = c 
Q2 

c 
rq as a term on the RHS of Eqs. (22- 

4s. (22-23) gives 

/ 

4-B(P2-1) 

\2c-P+l+t3(P+l)l 
2';,';J~;,')')(;jrP-2 = (;) .q. 

(32) 

,231. 

Equation (28) gives the determinant of the coefficients. Hence, 

the inversion of Eq. (33) gives p = q+2 and 

C 0 D =& 

-p2tlt4B -2[ptl-o(p-111 

-2[-ptl+B(p+l)l 4-B(p2-1) 

(33) 

(34) 

Note that the q-values of interest are q = 1, 0, -2 or p = 3, 2, 0. 

Equation (34) can provide solutions only for p = 2, 0 since p = 3 

gives A(3) = 0. In this case one considers 

p2 = (A+Blnr)r3 Q2 = (C+Dlnr)r3. (35) 

Substituting these forms into Eqs. (22-23) for the q = 1 component 

of the RHS yields 

[(4-88)A+(8-4@)C-6RB+2(l-t?)Dlr 

+[(4-88)B+(8-48)Dlrlnr = -4pr, 

-[(4-8f3)A+(8-4B)Ct2(l-S)B+6Dlr 

-C(4-8B)B+(8-4B)Dlrlnr = 2pr. 

To eliminate the rlnr term in both Eq.(36) and (37) choose 

(36) 

(37) 

(l-2B)B+(2-B)D = 0. (38) 

Equations (36-37) then become 
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(4-8@)A+(8-4B)C-68B+2(l-B)D = -411, 

(4-8@)A+(8-4o)C+2(1-B)B+GD = -2~. 

Subtracting Eq. (39) from Eq. (40) gives 

(l+ZB)B+(2tB)D = u. 

Solving Eqs. (38) and (41) simultaneously 

B = 1 2-Bu 
g--E- 

D = -1 l-28 
6 B u* 

Equation (39) or (40) now becomes 

(39) 

(40) 

(41) 

(42) 

(1-2R)A+(2-B)C = p B 1 1-90-R* !~ . (43) 

Since (A, C) are coefficients of r3 terms and already included 

in the homogeneous solution one may choose one relation between 

A and C arbitrarily. Let C = -2A in order to remove the B-terms 

from the LHS of Eq. (43). Then 

1 1-98-e2U 
A=-5E; 6 

1 l-9B-R2 ~ 
c=m a . 

Displacement 

The particular solution may be thoughtofas an incremental 

displacement to be added to the homogeneous terms. Thus assembling 

all the parts from Eq. (31) to Eq. (44) one has 

*% -Xr2tb3+[-;(l-2B)b3-;(3+28)Xr* 

-&l-9B-B2)r3+k(2-D)r31nr]cos20 , 
3 

*?I 

t&(l-gB-B2)r3-; (1-20)r31nr sin28. 
1 

(44) 

(45) 

(46) 
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Strain 

The incremental strain to be added to the homogeneous solution 

is found from Eqs. (45-46) using Eqs. (61-63) of Ref. (1). 

*%r = ; &'-2hrt[-$3+2R)hr 
i 

+&;i(3+78+B2)r2+$-(2-@)r21nr]cos*o , I 

-~3(7+3)r2-~(l-R)r21nr sin28. 
3 

Stress 

The incremental stress to be added to the homogeneous solution 

is found from Eqs. (47-49) using Eqs. (48-50) of Ref. (1). After 

inverting one first has 

*err = ~[~B*E~~-~(~-~)AE~~I, 

*‘ee 
= ~I-~(2-3)AErr+~3*Eee1, 

A5rB 
E 

= l+v Ere. 

Then using Eqs. (47-49) for the incremental strain one finds 

Acrr = $Jo2 -g(l-2B)r2+!$2-3@)hr-$2-3)b3r-1 

t -k(2-3)b3r-1-&2+13B)Xr 

-+$l-llR)r2 c0s2e , 
I 3 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 

(53) 
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2Tl 2 
*‘ee = ~J~ 

-$(3-23)r2+$(4-33)xrt$3b3r-' 
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-&.(3t53+232)r2-(l-3)r21nr c0s2e , 
I I 

Aare = $Jo2 -k3b3rW1t$(8+73)hr 

-=&3(7+3)r2-g(l-3)r*lnr sin28. 
I 

Boundary Conditions 

Since the form of the solution of the homogeneous equation is 

identical with that of Ref. (1) one may utilize Eqs. (55-65) of 

that reference. To these equations add the particular solutions 

found here to give the correct expressions for displacement, 

strain and stress. Apart from the special condition related to 

pretension and discussed in Ref. (1) the boundary conditions are 

as follows: 

At r=a, the innermost radius rr 

At r=b rr rr 

At r=c 

,(+)-,(-) = u(+)-,(-) = 0 
r r 8 e 

5 (+)-,(-) = 5(+)-,(-) = 0 
rr rr re re 

u(+)-u(-) = u( 
r r e 

At r=d, the outermost radius .(-) 
rr 

+q-) = 0 

= a;,’ = 0. 

(54) 

(55) 

(57) 

(58) 

(59) 

(63) 

(61) 
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Use of the Virial Theorem 

As discussed in Ref. (1) the virial theorem is used to obtain 

enough conditions to permit the longitudinal strain to be de- 

termined. From Eq. (95) in Ref. (1) the virial theorem may be 

written as 

I I (5 rrtueetuzz)rdrd8 = / r~;~.&dRtWB, 

where the double integral is throughout the cross section of the 

material under stress. The single integral is over the cylinder 

atr=r s and WB is the magnetic energy per unit length contained 

within the region bounded by r = rs. From Eqs. (16) and (19) 

one has 

II 
( urr+u ee+‘zz 

)rdrde = $T~J * 3 0 
I 

-+(c4-b4) 

+[ct(c3-b3)r -' s 1(c3-b3)-b3(c-b) 
3 

. (dynes) 

Since the stress components are the sum of the homogeneous and 

particular solutions and since the present homogeneous solutions 

are identical in form with those of Ref. (l), the LHS of Eq. (102) 

in Ref. (1) must be enhanced by II (l+v)(AorrtAaee)rdrde. In 

addition the current dependent terms on the RHS of Eq. (102) in 

Ref. (1) must be replaced with the RHS of Eq. (63). Using 

Eqs. (53-54) one finds 

(62) 

(63) 

Ji 
(ltv)(AurrtAuee)rdrde = $T*J~~%&+~) * 

[+4-b4)t2~(c3-b3)-2b3(c-b)~ . (64) 
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Numerical Results 

The stresses and strains that exist in three nested hollow 

cylinders have been calculated as a function of the central 

magnetic field. This has been done by utilizing the basic book- 

keeping for the homogeneous part of the solution from a previous' 

calculation. The improvement here consists of replacing the sheet 

current excitation of the previous problem with a thick cosine 

theta excitation in the region of the middle cylinder. As before 

twenty algebraic relations stemming from the boundary conditions 

in Eqs. (56-611, the pretension condition, and the virial theorem 

have been utilized to determine twenty coefficients. Thus the 

stress, strain, and displacement of any point in the dipole model 

structure may be found. For simplicity in the presentation of 

numerical results, however, only the values of r = a, r = b, 

r = c and r = d are given for a few angles. It is usually clear 

whether a quantity is stress or strain. Otherwise, R is radial, 

T is theta or azimuthal, Z is axial or longitudinal. To indicate 

the side of a point, P is used for positive and M for negative. 

Thus, for example, RTBP indicates the (r-,0) component at the 

positive side of the point r = b. The quantity J3J2 which is to 

be compared with the yield stress is tension is explained in Ref. (1). 

References 

1. S.C. Snowdon, "Mechanical and Thermal Stresses in Doubler 

Dipole Magnets", Proc. of Conf. on Computation of Magnetic 

Fields (COMPUMAG), Oxford, 1976, See also Fermilab FN-284, 

October 1975 

2. R.W. Little, Elasticity, Prentice Hall, Inc., Englewood Cliffs, 

New Jersey, 1964, p. 77 



-12- FN-304 
1620 

3. J.P. Blewett, "Iron Shielding for Air Core Magnets", 

Proc. of 1968 Summer Study on Superconducting Devices and - 

Accelerators, Brookhaven National Laboratory, 1968, p. 1042 



-13- FN-304 
1620 

t 
..*...***. r 

: -00~00000~ 2 
& D -< 

2;: ;. 
-.*m , 
SE? E 
:Go;; .x..z%4.+, “;g=;’ 
.Y cm-; 
l%L”~ on ZdY 3h.mo42 
ZL,‘z’$y 
OO~ctWU Y 0 001L( 

i aY’“‘L k YrnODz . zoz**u 0 24-4ae ..Y.xrccE 
Y ma .m90 ” oc.“cco .A 00-00. oLIo..oo 
,” .G’; 
% s: 

.* . . . . . . . . a 
g~~~;~&q~g$ $ 
~;;-~-e+“,;~ az 
11111,llll ddddd7:dddd 

Y.nu%nmv.YvnYIV 
DoccIoo-3cIoo 
~~.....4.._1.+33 
~“D0c30000~ 
.*.....,,. 
1111111111 

. . . . . . *.*. E 
00~0D000cI0 

E 

nnrnannnrn 
. . . ..*a..* 

013D0000DcIo 
L_(-4.,*_(..*_( 

m~m~PD.a~Do 
&&&Jnt;&$,: 
. ..44d-.._(dd_( 
***-l-t-f**** 
;::1:,Lx:.z 

nnc)nnnnnnn . . . . . . . . . . 
NNNNNNNNNN 
Mht4.~klG.+ 
ddddc’ddddd 
“_(_(.i..~41~~ 

. . . . . . es.. -x . . ..,...., 
NNNNNNNNNN 3” Lnn*unLvImlnmmu, 
w~“==~r.m~~ IC bbc-.T~oxePmD 
I”~(_.#.4~4~~ :- “,“ck”,c;c;:L:~ 
t~*otIJ,I F 1,,#,1,,,, 3 ” II I, II ” * 

; G 
2 2 5 ^Z” Z” 0 2.4. c(\ L cl-v? \^ -L-a zm 

f, SE.:’ Mm rtOMO;d 2 ozm.,l I 442t-asl 4 amI.tY.. 
2 wz,; 
m Z”%~ 
0 yo”s:g 
= n”gyLm&ld 
: E:s:z 
: we?. * .: c VlCOOOL L1 ZCZZZ” 2~000~ 0 “o”wr 
F 00.~00 In ‘“‘“p e “Darn N ..I 0~000. 
w dus ‘t.” 

z * 

. . . . . . . ..I 
L+kc%:L(I:%:: 
::~~~~~:I 
111111,111 

2 .*........ r:, wNhM”nlNNr.zCN 
p1 Y~LnyIcnvIY)myIyIyI 

== GhxG,“,“,?:,” 
2 11111t’o1,, 

i% dddddddddd . . . . . . . ..a 
oco~c1ooo~a 

. . . . . . . . . . D0~00000D0 
oo(Lcoo~o(D9 
7::;;:;::: 

**....*.., Fi 0..9~.nc.OO~~ 
:: i2?m.~~:g~:g~ 

NNNNNNNNNN 
IO1111111 

*....a.*.* 
-:, $g%sss%g$$ 
z-A T kx%%%xR2:: 
2 11111,111, 

n.......,. 
g f~~~~~:~;g 

..~4d.+...i.4_1+ 
5” ~o~oooooc,.a 

2 
2 
& 

SW........ 
5 rrrnrrnrrn 
c PP000900c)0 
+ LKK%%::8:: 

;7;;7:7;7; 
.*..a,.... 

& ououoo9~o~ 
c m.moxnmo~Pc-~ 
xX z%zzTx:: 

11111,11,, 

. . . . . . . . . . 
oe-~..coc~co~ 
Pe)Docc.eDcPo 
i%szzZ,~~:: 
1*111,,,,, 
. . . ...*... 

l?Kz!Kx% 
mmPL*emPooo 
,o,,,,,,,, 

; Y 
-2 ^- or- ZCJ x.3. ..q 
;;z 2: 
$2 3 
CIOWOI” 
“FZZF ” a-& ..pIom-0 coo YI” I.ICIrn * 1” 7_Ia “3*1”.~Y .a”“Y)IO 
‘zxti -Iuoo*F( a >ol-P 
Kul& icntravv “l-.OO”L ,>“-“a 

p. ~0D~0~0000 . . . . . . . . . . 

z 

. . . . , . . . . . 
00D00000c1~ 

. . . . . . . ..I 

L7xrzxzz: 
.mm”0a.~mmbas 
,11101,11, 

: llzz.z~1 c 090000005)0 
I- P?$Fz%x,“~ yyyy:‘y.yy 

s......... : D~~000000 
z 

~~c1D~~0000 
. ..a.*.... 

:zzzE 



-14- FN-304 
1620 

5 4, Y I‘ II II " 
': ; 6.3 

-5 -i 5 -z" S" c1 Z". L(\ L "-m \^ -cm zL.3 
z VIZ-l cm CI =w- -2 "DylOZ z 073""l w 44_1M" m pI.Y3<w- 
z Y,:"t;; 
- s."'rs 
is 'z%~ 
e .yl.l~Ln~W 

m """X'" VI uJoc(t C" 
v se.. .L 
L Y~Z9~E Z~OOOP 2 "DOWE 
c on.000 
Gl 0110.w.JLn e Oe.r-sn, 
a mP"nO. 
l" GZ * ;" *- e 

.4 
” I 1, Y II ” 

; 
” 

2; ^^ 
z,;r z3 
““L.l \LT 
OLOrn Z” 
-12A Y-l 
c&&sd 
“;$z: 
0 Z-IDTZ 
“c.!0oz-0 
coo Y)” 
UICIL.7 I- 
L” z2-z 
“~)v)O~” 
~““y1IO 
‘6%z,“,” 
-I”OOI” 
e c(I.0 
rz;wYYO 
zcn,mz 
YlJ”“OI 
lr.-lDaan 

Y, . . . . . . . . . . 
t”w domLmoPo~* 
zc .dnihfnnd(rnm 
-* %JkE:z:,^R: 
E 1,11*11,,, 

;Lz~.z,.%!; 
.?~Otbrt.nm~N 
‘.-“O”*l JnOI, 
.91mmh~PO-~ 
;;77;77”i:‘; 
. . . . . . ,... 

N-Dr(DLnDmICO 
,kz:z,“,“,:L9$ 

7Fi?x::: 
. . . . . . . . . . 

Y=““=-=“‘“” 

. . . . . . . . . * 
::~:~:D~: 
i%zxo’~:c 
0 t 0 y;;‘lyy;: 
.*...*.... 

7777=-- 

. . . . ...*.. : ~““““““““” 
cc 

P; GSddr&z,: c mlgn.nQ-nmwN 
@- “,z%:~~:~ 

111**111#~ 
. . . . . . . . . . 

: +-oau.u.,oVI 
w -.nnl4,“nnlr(-t9 
w 4mwolclh,..r( 

;;yf”’ 
Y,^ 
-au 0000.2~000cI 

. . . ...*... 
:::: oo-m-am 
.- D.*,nY)a.wu.l 


